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Large-scale, classroom-based experiments using adaptive instructional software pose somewhat unique challenges for 

experimental design and deployment. One reason for this is that adaptive software allows students to advance through 

the curriculum at different rates and encounter content at different times, meaning that content targeted for 

experimentation is often reached asynchronously by students within the same classroom. In addition, many pedagogical 

approaches subject to experimentation will require multiple “touch points” with students throughout a course. Nimble 

experimental methods necessitate that experiments are able to take place at any time during the school year, so a robust 

experimentation system may need to be aware of the student’s educational experience(s) prior to the experiment, both to 

permit students to be excluded from the experiment (if desired by the researcher) if they have previously been taught the 

target content, and to ensure that the pedagogical approach taken during the experiment is consistent with that which 

has been experienced by the student before and after the experimental period. 

 

The UpGrade A/B testing platform (Ritter et al., 2020) is designed to help experimenters navigate these issues. This 

paper discusses several key design considerations for conducting digital experiments within adaptive educational 

software: ordering and sequencing, coordination of experimental activities, and exclusion criteria. Following this is an 

illustration of how these principles were applied in two recently-conducted large-scale experiments. 

Ordering and sequencing  

Educational materials often adapt a narrative form. For example, a textbook is written to be consumed from the first 

chapter to the last, similar to chapters in a novel or scenes in a movie. In the educational context, topics are sequenced 

such that they obey prerequisite relationships. Unlike narratives in other domains, though, educational sequences are 

often customized to match state or national standards or to satisfy instructor preferences. It is common, for example, for 

an instructor to decide to skip a chapter, to substitute a chapter in the textbook for one in another book or to present 

the chapters out of sequence. Adaptive software works the same way but at the individual level. Instructors typically 

have control over the sequence and inclusion of topics in the curriculum at the class and individual levels. Adaptive 

software may also include, omit, extend or contract the presentation of particular topics for individual students, based on 

its evaluation of the student’s needs. As with other narratives, components of the educational narrative are designed to 

be encountered by students only once. Students may re-read a chapter but most do not. 

 

Within educational software, experiments might be concerned with general features which apply across all content, such 

as the general UI or the presence of resources like a glossary or with activities presented in the software. Our concern 

here is with experiments that are linked to educational activities. In an experiment designed to assess the impact of a 

particular activity (like completing a book chapter), we might want to differentiate students encountering the chapter for 

the first time from those re-reading the chapter. We might also want to guarantee students a consistent experience with 

that chapter. For example, if a student re-reads a chapter (to prepare for a test, for example), the student might 

reasonably expect that chapter to be identical to the one they initially read, even if an experiment takes place at one 

encounter but not the other. 

 

Within adaptive software, students might be completing the same activities at different times, meaning that an activity-

linked experiment will be running for different students at different times, even for students in the same class. Typical 

“in-vivo” classroom experiments deal with this issue by disengaging students from their normal instructional context to 

deliver experimental interventions at a particular time window. While such approaches are advantageous in the amount 

of control researchers have over the study, the benefits turn into drawbacks when attempting to scale (Stamper, 2012), 

since carefully timing and controlling the manipulation can become untenable when conducted over hundreds or 
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thousands of classrooms. The fixed-time-point, “pull out of context” approach is also poorly suited to adaptive learning 

curricula (Ritter et al., 2022). In such cases, students may have either already learned the target experimental material or 

have not yet mastered prerequisites for the material, leaving few participants in the ideal experimental “window”.  An 

alternative solution is to conduct a “curriculum-embedded” experiment, where students encounter the experiment 

within their normal instructional sequence. Students reach the target experimental topic and the experiment begins 

automatically, without disruption. The need to embed experiments within the curriculum becomes crucial when 

conducting experiments at scale across many states and districts, since students’ progress is not dictated by a universal 

timeline.  

 

Given these constraints, the reality that there is no optimal time to run an experiment for all students means that, 

particularly in widely-deployed adaptive instructional software, launching an experiment any time in the school year can 

provide useful data from some students. When the participant pool is thousands or millions of students, a smaller sample 

may still provide far more data, more quickly, and with greater statistical power than small-scale approaches. 

Coordinating experimental activities 

Some experiments may be designed to extend across multiple, rather than single, activities in a curriculum sequence. For 

example, researchers may add experimental interventions to multiple instructional modules within a unit topic. In such 

approaches, the elements of a student’s activity sequence may be determined by condition assignment; e.g. in a 

curriculum sequence made up of five activities, students randomly assigned to the experimental condition would receive 

both Activity 2a and Activity 4a rather than Activity 2 and Activity 4 (Figure 1). We refer to the site at which content 

may diverge in an educational experiment (for instance, immediately after completing Activity 1) as the experimental 

decision point. 

 

There are three options to managing student condition assignment when experiments involve multiple interventions. 

One approach is to have randomization occur at the start of the experiment (e.g. prior to Activity 1) with condition 

assignment consistent for each student across all coordinated activity elements. For example, if Activity 2 has to do with 

adding fractions and activity 4 has to do with subtracting fractions and there is some commonality in the approach to 

fractions taken in the experimental versions, we might want to ensure that assignment to experimental activities is 

coordinated across activities. In UpGrade, we call these coordinated decision points. A second option is for the experimenter 

to allow randomization to occur independently at each point (e.g., once at the end of Activity 1, and once at the end of 

Activity 3), with participants potentially receiving different condition assignments at each decision point, creating a 

“dosage effect”, with each student eligible to receive an experimental condition 0, 1, or 2 times in the illustrated example 

sequences. This might be the case, for example, if the experiment were testing the use of worked examples in fraction 

instruction. A third possibility is to control the dosage in a within-subjects experiment. We might want to ensure that 

students get a worked example either in Activity 2 or in Activity 4 but not in both. Note that the decision about which of 

these three ways to design the experiment has to do with the goals of the experiment and the particular educational 

content. Our goal is UpGrade is to allow experimenters to specify how to manage these issues, not to try and advise the 

experimenter on which to choose. 

 

  
Fig. 1: An activity sequence with two coordinated decision points 

Exclusion reasoning 

Another challenge presented by adaptive educational software is how to take into account students’ prior learning 

experiences. As noted earlier, embedding experiments in the curriculum is an approach that ensures students reach the 
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experimental content at a pre-defined point in the sequence, but students sometimes repeat an activity. Many 

experiments will want to distinguish between first and subsequent encounters of an activity. In many cases, prior 

experience with an activity may disqualify a student from the experiment, so it may be important to track students’ 

experiences with activities, even before the experiment begins. For example, in the coordinated activities case, a student 

who completes Activity 2 prior to the experiment starting might be excluded from the experiment so that Activity 4 will 

match the student’s experience with Activity 2. 

 

In UpGrade, we have implemented the ability to automatically exclude students from an experiment based on their prior 

learning experiences, and allow experimenters to determine whether, as in the “dosage effect”, a student assigned to the 

experimental condition must experience all possible activities associated with that condition to be included in the 

experiment. 

Example experiment designs 

These considerations are best illustrated with respect to specific experiments. Here, we describe two experiments that we 

ran in MATHia (Ritter et al., 2007), our adaptive software for teaching mathematics in middle and high schools. Within 

MATHia, students are assigned a sequence of math topics, called workspaces, according to their grade level and course. 

They can progress through workspaces at their own pace. Most workspaces present a variable number of problems to 

each student, depending on the student’s ability to demonstrate mastery of problems relevant to the topic addressed in 

the workspace. 

Personalization Experiment 

Based on increasing recognition that students’ sense of belonging in school can impact their academic achievement 

(Walton & Cohen, 2007), we were interested in whether this sense would increase among underrepresented student 

populations if they recognized that their math problems were personalized for students like them. To test this 

hypothesis, we conducted a large-scale experiment across three school districts. In the experiment, we generated word 

problems where, in the experimental condition, the (first) names of people referenced were drawn from a “localized” list 

of names taken from the student’s community, rather than from a standard, nationally-normed list. For example, in the 

control condition, students completed a word problem in which “Helen” is spending money at a certain rate, while in 

other school districts, the character name was “Deisy,” “Elianna” or “Zander.” 

 

Not every workspace in MATHia involves word problems and, to maximize impact, we wanted students in the 

experimental condition to experience multiple workspaces with localized names. With respect to Figure 1, this 

experiment design is one in which Activities 1, 3 and 5 are not word problem workspaces and so are identical for all 

students. Activities 2 and 4 involve word problems, and students in the experimental condition would receive word 

problems with localized names instead of the standard set (in the actual experiment, we localized 10 workspaces, with 

60-100 workspaces typical of a full-year curriculum). The experiment started in March, so some students had already 

completed some of the target workspaces prior to the start of the experiment (meaning that those students saw the 

default names). The study was conducted across multiple schools in districts, so there was variation in workspace 

ordering (curriculum sequences can differ across states and individual students, and state standards often dictate when 

topics are sequenced in the school year). 
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Fig. 2: Illustration of one problem from the “personalization” workspace. Names used in the problem matched 

common names in the student’s community. 

 

We wanted to maximize the difference between the conditions, so we used coordinated decision points to ensure that 

students maintained a consistent condition (i.e., control or experimental) over time and workspaces. To maximize 

participation, we did not exclude students who had previously encountered one of the workspaces, since we did not 

believe that returning to a workspace and have it personalized (if randomized to a condition) would not pose any 

conflict with a previous encounter with a non-personalized version of the workspace. In a different context (such as if 

the pedagogical approach taken in one workspace depends on the approach taken in a prior workspace), we might 

exclude students who had previously completed one of the target workspaces; UpGrade allows the experimenter to 

make this decision.  

Utility-value Experiment 

 
Fig. 3: Illustration of the manipulation in the utility-value experiment. 

 

In a second large-scale experiment, we focused on utility-value interventions (Harackiewicz et al, 2016), and whether 

increasing students’ perception of the value of mathematics in their everyday lives could affect their achievement and 

attitudes towards mathematics . In this experiment, conducted with over 13,000 students in over 500 schools, students in 
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the experimental condition saw videos which presented students talking about real-world examples of the mathematics 

topic they were learning (for example “going viral” on Instagram in a workspace about exponential growth). Within this 

experiment, we randomize at each decision point, rather than using coordinated decision points. As a result, each student 

received a particular “dosage” of utility-value activities. The experiment encompassed 8 workspaces, six that presented 

utility-value videos and 2 used for the pre- and post-tests (which were identical for all students). For individual students, 

encountering a utility-value workspace depended on the curriculum that teachers assigned to the student as well as the 

extent to which the student’s work in MATHia overlapped with the experiment window. As a result, individual students 

might encounter between 0 and 6 utility-value videos. As in the belonging experiment, we configured UpGrade such that 

prior experience with any of the workspaces presenting a utility-value video would not disqualify the student from the 

experiment. However, workspaces used for the pre- and post-test were marked as disqualifying; students who had done 

one of those workspaces prior to the experiment were excluded from the study. 

Conclusion 

The combination of narrative structure in course materials, flexibility in the presentation of those materials and the use 

of adaptive software requires careful consideration of how the experiment window interacts with the way students 

encounter content. In particular, experimenters need to think about whether instructional activities that take place at 

different times need to be coordinated and about whether prior experience with particular content should be 

disqualifying for potential participants. These requirements appear common in educational contexts but likely 

uncommon in other contexts. We have developed the UpGrade system to help experimenters manage these factors, and 

we have illustrated the utility of these features with respect to two recently fielded experiments. 
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