
Optimizing an Educational Game Using UpGrade:
Challenges and Opportunities

Nirmal Patel
Playpower Labs
Gujarat, India

nirmal@playpowerlabs.com

Dhrushit Raval
Playpower Labs
Gujarat, India

dhrushit@playpowerlabs.com

Vivek Fitkariwala
Playpower Labs
Gujarat, India

vivek@playpowerlabs.com

Derek Lomas
Delft University of Technology

Delft, The Netherlands
j.d.lomas@tudelft.nl

ABSTRACT
UpGrade is an open-source tool for A/B testing in educa-
tional software. We this study, we used UpGrade to run large
scale online experiments in an educational game. Our ex-
periments were aimed at increasing the student engagement.
We experimented with various features of the game such as
question difficulty, game narrative, feedback style, etc. to
find out which conditions produced optimal outcomes. One
after another, we conducted 3 different experiments. All of
these experiments were created and monitored through Up-
Grade. We faced several issues during the implementation of
these experiments within UpGrade. We discovered that buggy
programming logic in the educational software can produce
invalid experiment enrollments in UpGrade. We also found
out that without tracking version of the educational software,
it is possible to get noise in the experimental data. We present
several recommendations to avoid these pitfalls. Results of
our experiments are not discussed in this paper.

Author Keywords
Online Experiments; A/B Testing; Educational Games;
Product Optimization

CCS Concepts
•Human-centered computing → Human computer inter-
action (HCI); Haptic devices; User studies; Please use the
2012 Classifiers and see this link to embed them in the text:
https://dl.acm.org/ccs/ccs_flat.cfm

INTRODUCTION
Online experiments provide us an evidence-based framework
to improve software applications [1]. We can run experiments
in the web, desktop, and mobile applications and optimize
various metrics such as user engagement, click through rate,
and, in the context of the educational software, student learn-
ing. It is possible run large-scale online randomized control
trials (RCTs) in online learning applications to make student
learning more efficient and effective [4].

Running large-scale RCTs in online educational software is
often complicated and expensive. Each experiment requires

Figure 1. Experiments in the UpGrade web application.

a dedicated software development effort at the start and end
of the study. This makes it hard for the educational software
companies to leverage the great value that A/B testing can
provide to them. An open-source A/B testing tool called
UpGrade has been designed to get around these issues and
make A/B testing in education more affordable and accessible
[3].

UPGRADE
UpGrade is a web application that allows researchers to run
experiments in the digital educational products. It allows users
to create a number of simple experiments that can run in paral-
lel (See Figure 1). Students in the digital platform get enrolled
in the running experiments, and randomly get assigned to one
of the experimental conditions. Once a student is assigned to a
condition, the condition remains the same until the experiment
ends. At the end of the experiment, based on a researcher se-
lected rule, users either keeps getting the condition they were

https://dl.acm.org/ccs/ccs_flat.cfm


Figure 2. Creating an experiment in the UpGrade web application.

assigned to or revert back to a ’default’ non-experimental ex-
perience. UpGrade also implements a set of consistency rules
for group random assignments. Using these rules, researchers
can do random assignment at the classroom, school, or district
level.

Experiment Points and Experiment Sites
To use UpGrade to conduct experiments within the educational
software, we have to integrate the software with the UpGrade
server. This integration takes place at different Experiment
Points in the code. Experiment Points are actual places in the
application code where the software sends the user information
to the UpGrade server, and requests a condition assignment.
For example, a line 280 in a file RenderLessonViewer.java
can be an Experiment Point. At this line, the software will
connect to the UpGrade server to find out which version of
the lesson viewer should be shown to the user. UpGrade
server will respond with a condition assignment. If UpGrade
server returns a condition assignment that the Experiment
Point does not understand, it will revert back to the ’default’
non-experimental experience.

Experiment Sites are the places in the user interface where
the experiments are going on. For example, a lesson in an
online program can be an Experiment Site. At this Site, you
can run an A/B test to compare the effectiveness of two dif-
ferent versions of the same lesson. In UpGrade, Experiment
Sites are defined by a combination of an Experiment Point
and a unique identifier. If there is only one unique identifier
for the Experiment Site, then it can be defined only by the
corresponding Experiment Point.

Experiment Creation and Deployment
UpGrade web application provides a user interface to create,
modify, and monitor experiments. Creating an experiment in
UpGrade requires the researcher to configure various prop-
erties of the experiments (See Figure 2). An experiment in
UpGrade can have two or more conditions. Each condition
is assigned a weight according to which it will be randomly
sampled. A single experiment can run on one or more Ex-
periment Sites in the digital platform. You have to define all

Figure 3. Numberline estimation task in the Battleship Numberline. The
game tells the student that there is a robo-pirate at position 3 in the
numberline, and the student to estimate 3 on the numberline.

of the Experiment Sites of the experiment by writing down
their corresponding Experiment Points and unique identifiers.
The experiments can be configured to start and end automati-
cally or manually. Once an experiment starts, the Experiment
Points listed in the experiment will start receiving condition
assignments.

Assignments and Enrollments
UpGrade assigns users to conditions in all of the running ex-
periments. It is possible that a some users do not experience
the assign condition and leave before they experience it. To
distinguish condition assignment and actual condition expe-
rience, UpGrade requires the educational software to call a
markExperimentPoint() function in its SDK when users actu-
ally experience their assigned conditions. This action enrolls
the user in the corresponding experiment.

BATTLESHIP NUMBERLINE STUDY
We used UpGrade to run 3 different experiments in an online
game called Battleship Numberline. The game is hosted on an
educational games website BrainPOP, and students from dif-
ferent parts of the world can freely access the game. The game
is designed to improve children’s understanding of numberline
estimation. When the game play starts, students are asked to
estimate a number’s position on the numberline. If they esti-
mate it correctly, they get to explode a pirate ship. For every
explosion, students get coins. When the game loads, students
are presented a menu to choose the content area they want
to practice. Once they pick one of them (students can pick
between Fractions, Whole Numbers, Decimals, and Mixed
Bag), the game keeps presenting randomly chosen questions
from an item bank. At any point, students can choose to go
back to the menu. This game has been subjected to multiple
experiments in past [2]. Our experiments in this study aimed
at improving student engagement in the game, which was
defined as log(seat time∗number o f questions).

UpGrade Experimentation Process
To run the experiments within Battleship Numberline using
UpGrade, we started by setting up the Experiment Points in
the code. Once they were ready, we were free to run experi-
ments at those Experiment Points anytime without requiring



Experiment
Point

Description

setTimeLimit Set the time limit to answer a given
question (accepted conditions: any
positive integer)

setItemDifficulty Set the difficulty of the item by vary-
ing the size of the target, bigger
sized targets are easy to hit, smaller
ones are more difficult (accepted
conditions: any positive integer)

setMissionMode Turn the ’mission mode’ in the game
on or off (accepted conditions: ’on’
and ’off’)

setFeedbackStyle Change the style of feedback be-
tween positive only and positive and
negative combined (accepted condi-
tions: ’positive’ and ’positivenega-
tive’)

Table 1. Experiment Points in the Battleship Numberline

any additional software development effort. The UpGrade
architecture enabled us to rapidly run a series of experiments.
We found this to be a great improvement over our previous
method of running online RCTs, where we had to do software
development and quality assurance testing for every single
experiment.

To use UpGrade to conduct experiments in the Battleship
Numberline, we implemented 4 different Experiment Points in
the game (See Table 1). Each experiment point corresponded
to exactly one Experiment Site in the user interface.

Experiment 1: Time Limit and Difficulty
The objective of this experiment was to find the optimal com-
bination of time limit and question difficulty that produced the
most amount of student engagement. This was a 4x4 multi-
factor experiment. The time limit levels were 10, 20, 30, and
60 seconds. The question difficulty was controlled by chang-
ing the size (or effectively the length) of the target. The unit of
the size was the percentage of the numberline. For this factor,
the levels were 5, 10, 15, and 20 percent of the numberline
(See Figure 4).

Figure 4. Experiment 1 where we varied time limit and question diffi-
culty. The question in the left is less difficult versus the question in the
right.

We used experiment points setTimeLimit and setQuestion-
Difficulty in this experiment. To implement this multi-factor

experiment in UpGrade, we created two single-factor experi-
ments and ran them in parallel.

Figure 5. Experiment 2 where we introduced the challenge mode. In
the challenge mode, we showed students a prompt telling them that they
were on a mission (top). We also let them see how many missions were
there in the game (bottom).

Experiment 2: Mission Mode
To increase the engagement of the students further after Ex-
periment 1, we decided to introduce a ’mission mode’ in each
of the content areas of the game. In this experiment, we used
the optimal parameters of the Experiment 1 that produced the
highest student engagement with the game.

It has been observed in an older version of the Battleship
Numberline that challenge can lead to more engagement [2].
To test that hypothesis in the new version of the game, we
created an A/B test that assigned students to either a mission
mode or a non-mission mode. In the mission mode, students
were told that they were on a mission to complete a certain
number of challenges (See Figure 5). In the non-mission mode,
students were given questions indefinitely until they went back
to the menu.

Figure 6. Experiment 3 removed the above prompt from the Experiment
2. This prompt was shown to the students in the Experiment 2 when they
incorrectly answered 4 questions in a row.

Experiment 3: Feedback Style
To further improve Experiment 2, we eliminated the negative
feedback in the mission mode. In the Experiment 2, when
users incorrectly answered 4 questions in a row, we showed
them negative feedback (See Figure 6) and restarted their
progress. In this experiment, we stopped showing users nega-
tive feedback and they did not lose their progress. Rest of the
configuration of the game remained same as the Experiment 2.



Data Collection
UpGrade allowed us to export the condition assignment data
from the web portal. This data contained a mapping between
student IDs and their experimental conditions. The students’
activity data were exported from our game’s database. After-
ward, both of these datasets were combined for the experimen-
tal data analysis.

RESULTS
Since our game was hosted on BrainPOP, which is quite popu-
lar among K-12 classrooms in the US, we saw a fair amount
of usage of our game. The high usage of our game combined
with the flexibility of UpGrade allowed us to quickly run and
analyze experiments one after another. In the Experiment 1,
we found out that the time limit of 20 seconds and the ques-
tion difficulty of 10 percent led to the most engagement. In
Experiment 2, we discovered that the Mission Mode did not
produce more engagement.

Experiment N Start Date
1 83070 5 May 2020
2 23135 17 June 2020
3 1366 16 July 2020

The experiment enrollments decreased over time because of
the end of the school year. We hope to present the results of
all of the experiments in a later article.

IMPLEMENTATION CHALLENGES
We faced several novel implementation challenges when run-
ning the described experiments. We realized that if researchers
are unaware of these potential pitfalls, they can end up report-
ing incorrect findings. All of these pitfalls can be avoided by
improving the educational software and its integration with
the UpGrade server.

Invalid Enrollments
In our implementation, Experiment 2 received several thou-
sand invalid enrollments because of a buggy game program.
The invalid enrollments occurred because students enrolled
in the Experiment 1 were mistakenly enrolled again in the
Experiment 2. The game programmer had written down a
logic that enrolled the game users in all of the experiments
running on the UpGrade server. When we created Experiment
2 in UpGrade, we immediately started getting enrollments in it
from the users who were getting enrolled in the Experiment 1.
To resolve this issue, we stopped bulk enrolling users in all of
the experiments at the same time. Instead, we started enrolling
the users in the experiment when they actually experienced a
condition from that experiment.

Application Version Tracking
During Experiment 1, we made several small fixes and changes
in the game. In the data logs of our game, we did not track
these changes using SemVer or any other versioning scheme.
Due to this, in the experimental data of Experiment 1, we did
not know which users saw which variation of the Experiment
1. After we released the fixes, some of the users kept using the
cached version of our game. This caused a data mix-up that
was impossible to resolve without a version tracking scheme.
To fix this issue, we started tracking the version of our game

using the SemVer versioning scheme. This allowed us to see
that our users were playing the cached version of our game for
up to 4 days after the new version was released.

Testing Data
Although UpGrade provides a way to manually assign users to
conditions for quality assurance testing purpose, it is very easy
to get test or demo users enrolled in a live experiment. For
example, right now, if anyone opens Battleship Numberline
on the BrainPOP platform for a demo or testing purpose, they
cannot avoid getting enrolled in an experiment. To avoid this
test data mix-up in web based learning software, we recom-
mend using a URL parameter that can indicate that the current
use of the application is for a testing or a demo purpose.

UpGrade Implementation Recommendations
Based on the implementation challenges that we faced, we
provide several recommendations to that will help ensure the
validity of the UpGrade experiments:

1. Only run one experiment at a time. Avoid running multiple
experiments together, unless they are part of a single multi-
factor experiment.

2. In the educational software code, enroll users in the ex-
periments when they actually experience the experimental
conditions, not before.

3. Track versions of your educational software in the data logs,
and keep them aligned with your experiments.

4. During an experiment, try to ensure that a newly released
change in the software reaches to all of your users. If some
of the users still keep using the older version, use version
tracking to subset the experimental data.

5. For web based application, provide a URL parameter that
makes users experience the experimental conditions, but
does not enroll them in the experiment.

OPPORTUNITIES
UpGrade provides a lot of opportunities to researchers for
rapidly running educational experiments at scale. Once the
learning software is equipped with Experiment Points, re-
searchers are free to run experiments without requiring any
additional software development effort. This makes experi-
mentation more efficient and affordable. Since UpGrade is
open-source, it can be enhanced to have more features such as
multi-factor experiments, within subject experiments, Multi-
Armed Bandit based optimization, pre-registration of the stud-
ies, etc. Overall, we find that UpGrade brings affordability
and efficiency in the educational experimentation, and so, it
is bound to increase the speed at which we can do learning
science and impact student learning at scale.

CONCLUSION
In this paper, we showed how we ran experiments in an online
educational game using UpGrade, an open-source tool for A/B
testing. We described several novel implementation challenges
that we faced, and presented a list of recommendations for
researchers and developers to avoid the these challenges. We
hope that our insights help researchers ensure validity of their
experimental analyses.



REFERENCES
[1] Ron Kohavi, Roger Longbotham, Dan Sommerfield, and

Randal M Henne. 2009. Controlled experiments on the
web: survey and practical guide. Data mining and
knowledge discovery 18, 1 (2009), 140–181.

[2] J Derek Lomas, Kenneth Koedinger, Nirmal Patel,
Sharan Shodhan, Nikhil Poonwala, and Jodi L Forlizzi.
2017. Is difficulty overrated? The effects of choice,
novelty and suspense on intrinsic motivation in
educational games. In Proceedings of the 2017 CHI
conference on human factors in computing systems.
1028–1039.

[3] Steve Ritter, April Murphy, Stephen Fancsali, Derek
Lomas, Vivek Fitkariwala, and Nirmal Patel. 2020.
UpGrade: An open source tool to support A/B testing in
educational software. L@S Workshop on A/B Testing at
Scale (2020).

[4] John C Stamper, Derek Lomas, Dixie Ching, Steve
Ritter, Kenneth R Koedinger, and Jonathan Steinhart.
2012. The Rise of the Super Experiment. International
Educational Data Mining Society (2012).


	Introduction
	UpGrade
	Experiment Points and Experiment Sites
	Experiment Creation and Deployment
	Assignments and Enrollments

	Battleship Numberline Study
	UpGrade Experimentation Process
	Experiment 1: Time Limit and Difficulty
	Experiment 2: Mission Mode
	Experiment 3: Feedback Style
	Data Collection

	Results
	Implementation Challenges
	Invalid Enrollments
	Application Version Tracking
	Testing Data

	UpGrade Implementation Recommendations

	Opportunities
	Conclusion
	References 

