
UpGrade: An Open Source Tool to Support A/B Testing in
Educational Software

Steven Ritter, April Murphy,

Stephen E. Fancsali

Carnegie Learning, Inc.

Pittsburgh, PA, USA

{sritter, amurphy, sfancsali}

@carnegielearning.com

Vivek Fitkariwala, Nirmal Patel

PlayPower Labs

Ahmedabad, India

{vivek, nirmal}

@playpowerlabs.com

J. Derek Lomas

Delft University of Technology &

PlayPower Labs

Delft, The Netherlands

dereklomas@gmail.com

ABSTRACT

This paper describes a new, open source tool for A/B testing

in educational software called UpGrade. We motivate

UpGrade’s approach, describe development goals and

UpGrade’s software architecture, and provide a brief

overview of working within UpGrade to define and monitor

experiments. We conclude with some avenues for future

research and development.

Author Keywords

Field experimentation; A/B testing; Educational

technology.

INTRODUCTION
Simon's 1967 address at the Presidents Institute at Princeton

University [4] described "learning engineers" as

"professionals in the design of learning environments" who

work (with university faculty in the context of Simon's

address) to "design and redesign learning experiences" and

encouraged a collaborative, experimental approach to

improving learning outcomes and "increasing learning

effectiveness." IEEE’s Industry Connections Industry

Consortium on Learning Engineering (ICICLE) describes

the emerging discipline of learning engineering as “a process

and practice that applies the learning sciences using human-

centered engineering design methodologies and data-

informed decision making to support learners and their

development” [2]. Researchers and practitioners of the

emerging discipline tend to have expertise at the intersection

of computer, learning, and data science(s), and the rise of

large-scale educational technology platforms provides a

variety of means by which both human-centered design

methodologies and data-informed decision making can be

applied to improve learning.

An important set of methodologies for making data-informed

decisions involves field testing instructional improvements,

which can be done at large scale on widely deployed

educational technology platforms. Specifically, the ability to

field test instructional improvement via randomized

experiments or A/B tests represents an especially important

opportunity for learning engineers to use rigorous, evidence-

based approaches to improve outcomes more rapidly than by

way of a traditional research cycle. Building on emerging

needs and requirements for deploying large-scale A/B tests

within their own learning platforms, Carnegie Learning

partnered with PlayPower Labs to develop UpGrade, a free

and open-source A/B testing framework designed to support

randomized field testing in educational software. This

framework provides a way for learning engineers to engage
with improving learning experiences at scale, and takes into

account a variety of constraints and requirements imposed

upon educational platform developers, especially, but not

limited to, those imposed by the realities of school-based

learning in K-12 and other institutional settings.

UpGrade is unique from widely-available A/B testing

systems, including general platforms like Optimizely,

Launch Darkly, PlanOut, and others, which represent a mix

of commercial and open source solutions, and A/B testing

systems deployed in some educational contexts (e.g., the E-

TRIALS Testbed on the ASSISTments platform [1]).

Specifically, UpGrade addresses several concerns that are

not well satisfied by current off-the-shelf products but which

are important to educational software, particularly when such

software is used in institutional settings. One such concern is

the ability to assign groups of students to condition as a block

(e.g., classes, schools, districts), to ensure, for instance, that

students in the same class receive consistent experimental

features, especially when experiments are intended to test

often substantively different approaches to providing

instruction and practice on the same topics. Issues

concerning group random assignment are addressed by Ritter

et. al. [3].

In what follows, we begin by briefly describing an example

experiment that manifests some of the key experimental

design issues that UpGrade was designed to address, though

UpGrade is capable of handling more and less complex

designs. Next, we consider a set of development goals for

UpGrade for its initial implementation as well as its overall

architecture. Then we describe experimental conditions and

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the Owner/Author.

L@S ‘20, August 12–14, 2020, Virtual Event, USA. © 2020 Copyright is held by the

owner/author(s).

the lifecycle of an experiment before turning to the

practicalities of defining and monitoring A/B tests with

UpGrade. We conclude with some directions for future

research and development as well as a call for collaborators

and platform developers seeking to build learning

engineering capacity by integrating UpGrade into their

platforms.

AN ILLUSTRATION: ALTERNATIVE ACTIVITY
EXPERIMENTS

UpGrade (and this paper) focuses on features that are of

importance in educational software, but there are no

particular barriers to using UpGrade to support A/B testing

within other kinds of software. UpGrade can be used to A/B

test user interface elements, layout, messaging and any other

aspects of the user’s experience that is controlled by

software.To start, we describe a hypothetical experiment that

manifests several key issues that UpGrade is designed to

address.

In educational software, it is common for activities to be

presented sequentially (as in Figure 1). These activities could

be chapters in an ebook, interactive exercises, videos, test

questions, among other possibilities. In some systems, all

students would receive the same sequence; in others, the

sequence might vary for different students. In some systems,

students pick the activity they are to work on; in others, the

system will pick the activity for the student.

Figure 1. A sequence of five educational activities.

An “alternative activity” experiment looks like Figure 2:

randomly-selected students are assigned to receive Activity

2 with probability p, and students are assigned to receive

Activity 2a with probability 1 - p. Activity 2 and Activity 2a

are intended to serve the same educational function. For

example, in an eBook application, Activity 2a might be an

alternative book chapter. The alternative might be

completely different or it may differ in only some details

(such as one particular diagram). The goal of the experiment

is to see whether students learn better from the original or the

revised chapter.

Educational content sometimes builds on earlier-presented

content. For example, Activity 4 (Chapter 4) in our eBook

might reference the material presented in Chapter 2 in a way

that requires the student to have received the corresponding

version of that chapter. Figure 2 illustrates this situation. A

student randomly assigned to see Activity 2a must also see

the coordinated Activity 4a. This type of coordination is

managed by UpGrade via what we call “experiment sites.”

Many students will complete Activity 2 (e.g., reading

Chapter 2 in our hypothetical eBook) and never revisit it.

However, some students might go back and reread Chapter 2

or redo the activity, perhaps months later in preparation for a

test. Suppose that an experiment is running when the student

initially reads the chapter, but the experiment has concluded

by the time the student goes back to review. Should the

student receive the same version of the chapter or activity

that they saw the first time? The answer will likely vary

depending on both the type of changes and the extent of

changes to the chapter or activity. But, at least in some cases,

we would want the chapter to be consistent upon every

encounter. To achieve this, the experimental condition must

persist, even after the experiment is over. We call the goal to

provide individual students with a consistent experience over

time individual consistency.

Figure 2. An alternative activity experiment.

In a classroom setting, if the teacher wishes to provide

whole-group instruction to the class, and the control and

experimental versions of the eBook are fundamentally

different, then it would be disruptive to both teachers and

students if half the class got the control version of the eBook

and half got the experimental version. Since teachers

commonly teach multiple classes on the same topic, it would

be most convenient for them if the students in all of their

classes received the same version of the eBook. The goal to

provide common experiences to groups of students is called

group consistency, and UpGrade supports group random

assignment (see [3]).

There are cases where it is impossible to satisfy both

individual and group consistency. For example, if students in

Class A are assigned the control eBook and those in Class B

are assigned the experimental textbook, which version of

Activity 2 should a student receive if they start in Class A

and then transfer to Class B? Consistent resolution of these

kinds of anomalies and flexibility for researchers to

determine what resolution is appropriate are major functions

of UpGrade.

DEVELOPMENT GOALS & ARCHITECTURE

We set out to develop UpGrade according to a set of

requirements and goals that we think will maximize the

usefulness of the platform for educational technology

developers working in school-based instructional and similar

settings while still maintaining flexibility for broader use-

cases. UpGrade runs as a web service separate from the

application with which it is integrated (see Figure 3).

Developers may host their own UpGrade server, or

companies may host servers as a service for educational

software developers.

Since educational data can be sensitive, UpGrade stores only

anonymized identifiers for students, teachers, classes,

schools and other sensitive information.

Figure 3. UpGrade architecture. Upgrade operates as a

separate web service from the educational application and the

data portal. Researchers work directly with UpGrade to define

experiment parameters. Educational software queries

UpGrade to determine conditions for individual students.

UpGrade allows simple data analysis sufficient for monitoring

experiment progress, researchers can also use the UpGrade

Data Portal to export data for more detailed analysis.

Educational software, particularly that used in schools,

responds to yearly (or semester-long) educational cycles.

Content and features that might be highly relevant at the

beginning of the year may be much less relevant as the school

year proceeds. For this reason, experiment designs to be

targeted at a particular classroom or school need to be closely

coordinated with that classroom or school’s curriculum

progress. With UpGrade, an experiment can be targeted at a

larger set of classes or schools, with the expectation that, due

to variation in sequencing and pacing, some students will

“see” the experiment while others will not.

In order to promote the development of a learning

engineering community, UpGrade is free and open source.1

CONTROLLING EXPERIMENTAL CONDITIONS

Within UpGrade, every experiment is given a unit of

assignment. If the unit of assignment is individual, then

group membership information is irrelevant. If the unit of

assignment is group, then the researcher can specify the

group type (e.g., class, teacher, school, district), and

UpGrade will assign conditions on a group basis.

For group-randomized designs, researchers can direct

UpGrade to make decisions about conflicts between

individual and group consistency through the use of the

“Consistency Rule.” This rule can take on three values:

Group: Under this rule, the priority is that all students in a

group have a common experience, even if it means that some

students may have an inconsistent experience. UpGrade may

exclude a group from the experiment, if it is not possible to

keep the group consistent, potentially sacrificing statistical

power.

1 Under https://opensource.org/licenses/BSD-3-Clause

Individual: Under this rule, the priority is that individual

students have a consistent experience, even if that experience

differs from the rest of the class (or group).

Experiment: Under this rule, the student’s experience is

guided by whether the experiment is running. During the

period where the experiment is active, students will receive

the experience appropriate to the group assignment, even if

it violates individual consistency. This rule is most

appropriate when the manipulation may not be evident to

students and when the researcher believes that prior

experience will not affect the student’s experience in an

experimental condition.

An additional consideration with respect to consistency is

what to do when the experiment is over. The “Post

Experiment Rule” determines this. Researchers can choose

to “continue” the student’s experience (keep them in

condition), “revert” to the default behavior or transfer all

students to a single condition (presumably the “winning”

condition with the best learning outcomes).

EXPERIMENT LIFECYCLE

To run an experiment, at least two conditions must be made

available (the control is often the existing behavior).

Generally, this involves software development, web

programming and/or design of media. Running an

experiment also requires someone to design the

characteristics of the experiment: the unit of assignment, the

eligible users to participate in the experiment, the number of

participants required, start and end dates, etc. In many

organizations, these two functions will be performed by

different individuals (or even different departments).

UpGrade allows these two functions to proceed

independently. UpGrade enables design of the experiment

independent of implementing the experiment conditions (and

either can proceed the other), but the experiment cannot be

delivered until both tasks are completed.

To manage the experiment lifecycle, experiments progress

through (at most) seven states:

Inactive: The experiment has not yet started. Students are not

assigned to experiment conditions, and students using the

software will not see any experimental variants. Experiment

design and/or development may still be underway.

Preview: UpGrade provides a way to manually assign

“demo” students to condition. This is intended to be used to

test or preview an experiment without assigning real

students. Note that these students can persist, even after the

experiment is running. This status simply enables previewing

assignment before the experiment officially starts.

Scheduled: The experiment is designed and developed and is

set to automatically launch at a specified time and date but

has not yet started.

Enrolling: The experiment is running. Students are assigned

to and continue working according to condition. We use the

term “enrolling” instead of “running” since students may

continue to experience the experimental conditions after the

experiment stops enrolling.

Enrollment Complete: The experiment has collected enough

data to be analyzed (at least by the original design). Students

who have been assigned to a condition will continue to be

presented experiences corresponding to their condition (so

the experiment continues to collect data).

Cancelled: This is an abnormal termination state, to be used

in cases where the experimental condition(s) are buggy or

clearly educationally ineffective. Under this status, students

will not be receive an experimental condition, even if they

are in a group that has been assigned a condition or if they

have previously experienced the experimental condition

themselves. Cancelling an experiment can violate both

individual or group consistency.

Archived: An archived experiment is one that is completed

and no longer supported. In archived status, the code in the

user-facing app that supported the experimental conditions

should not be expected to be present. Archived status is

permanent; experiments cannot transition to any other status.

DEFINING EXPERIMENTS

Consistent with the idea that the researcher defining

experiment parameters may not be the programmer or web

developer implementing experimental conditions, UpGrade

provides an easy to use web-based interface for defining

experiments (Figure 4).

Figure 4. User interface for defining major experiment

conditions and parameters. The researcher can set status, unit

of assignment, consistency and post-experiment rules and

ending criteria.

MONITORING RESULTS

Educational applications can provide UpGrade with

metadata specifying the metrics they collect on students.

2 https://e2icoach.org/

3 See, for example, the Center for Open Science’s

preregistration platform: https://www.cos.io/our-

services/prereg

This allows researchers to link these metrics to specific

experiments. Metrics can be simple (e.g., “total time spent

using the app”) or grouped. Grouped metrics allow multiple

measure for different components of the app (e.g., “time for

Activity 1” separate from “time for Activity 2”). Monitored

metrics provide a real-time view of experiment progress.

These metrics might be sufficient to determine the

effectiveness of an intervention, but data export functionality

allows student condition data to be linked with application

data outside of UpGrade for more sophisticated analyses.

CONCLUSION

Having described design goals and features of UpGrade, we

look forward to expanding the learning engineering

community of UpGrade users and contributors. We are

considering, for future releases, providing APIs so that

educational applications can provide user-defined

experiments (e.g., teachers could compare variants with their

students), ways to use UpGrade’s knowledge of

experimental design to facilitate analysis and publication

(e.g., integration with e2icoach,2 automatic preregistration of

experiments,3 output of experimental design data for more

sophisticated statistical models), expanded experiment

designs (e.g., within-subject and factorial designs) and

related functionality like feature flagging.

Source code for UpGrade is available,4 and additional

information about the platform will be available at

upgradeplatform.org. If you are interested in using or

contributing to UpGrade, please contact

upgradeplatform@carnegielearning.com.

ACKNOWLEDGEMENTS

This work was supported by grants from the Bill & Melinda

Gates Foundation and Schmidt Futures.

REFERENCES

[1] Neil T. Heffernan and Cristina L. Heffernan. 2014. The

ASSISTments Ecosystem: Building a platform that

brings scientists and teachers together for minimally

invasive research on human learning and teaching. Int.

J. Artif. Intell. Educ. 24, 470-497.

[2] Institute of Electrical and Electronics Engineers

(IEEE). 2020. Home – ICICLE. Retrieved July 31,

2020 from https://sagroups.ieee.org/icicle/

[3] Steven Ritter, April Murphy, and Stephen E. Fancsali.

2020. Managing group random assignment in

UpGrade. Submitted to Proceedings of the First

Workshop on Educational A/B Testing at Scale (at

Learning @ Scale 2020).

[4] Hebert A. Simon. 1967. The job of a college president.

Educational Record 48, 68-78.

4 https://github.com/CarnegieLearningWeb/educational-

experiment-client

https://sagroups.ieee.org/icicle/

	UpGrade: An Open Source Tool to Support A/B Testing in Educational Software
	ABSTRACT
	Author Keywords

	INTRODUCTION
	AN ILLUSTRATION: ALTERNATIVE ACTIVITY EXPERIMENTS
	DEVELOPMENT GOALS & ARCHITECTURE
	CONTROLLING EXPERIMENTAL CONDITIONS
	EXPERIMENT LifeCYCLE
	DEFINING EXPERIMENTS
	MONITORING RESULTS
	Conclusion
	ACKNOWLEDGEMENTS
	REFERENCES

